Dynamic programming approach to optimal weight selection in multilayer neural networks
نویسنده
چکیده
A novel algorithm for weight adjustments in a multilayer neural network is derived using the principles of dynamic programming. The algorithm computes the optimal values for weights on a layer-by-layer basis starting from the output layer of the network. The advantage of this algorithm is that it provides an error function for every hidden layer expressed entirely in terms of the weights and outputs of the hidden layer, and minimization of this error function yields the optimum weights for the hidden layer.
منابع مشابه
A numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملLIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK
In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...
متن کاملSolving Complex Real Time Engineering Problems by Artificial Immune System: Case Study of Dynamic Stochastic Knapsack Problem
This paper describes an artificial immune system approach (AIS) to modeling phenomenon characterized by uncertainty, and real-time decision-making. The proposed AIS represents combination of optimization techniques and neural networks. The AIS develops antibodies (the best control strategies) for different antigens (different "scenarios"). This task is performed using some of the optimization o...
متن کاملModel-free Adaptive Dynamic Programming for Optimal Control of Discrete-time Affine Nonlinear System ⋆
In this paper, a model-free and effective approach is proposed to solve infinite horizon optimal control problem for affine nonlinear systems based on adaptive dynamic programming technique. The developed approach, referred to as the actor-critic structure, employs two multilayer perceptron neural networks to approximate the state-action value function and the control policy, respectively. It u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 2 4 شماره
صفحات -
تاریخ انتشار 1991